
ST EDWARD'S OXFORD

Lower Sixth Entrance Assessment

November 2011

Mathematics

1 hour

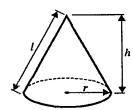
Candidate Name:

Instructions

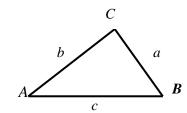
- There are 80 marks available
- Attempt all questions
- Write all answers, including your workings, in this booklet
- Calculators are NOT permitted
- Where answers are not exact, they should be given to three significant figures unless otherwise specified

You may use the following formulae:

Volume of prism = area of cross section \times length


Volume of sphere =
$$\frac{4}{3}\pi r^3$$

Surface area of sphere = $4\pi r^2$


Volume of cone = $\frac{1}{3}\pi r^2 h$

Curved surface area of cone = πrl

In any triangle ABC

Sine Rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine Rule $a^2 = b^2 + c^2 - 2bc \cos A$

Area of triangle = $\frac{1}{2}ab\sin C$

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$ where $a \ne 0$, are given by $x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$

1. (a) Solve
$$7r + 2 = 5(r - 4)$$

(b) Solve
$$4 = \frac{22}{p}$$

2. Convert 1.35 cubic metres to cubic centimetres. Give your answer in standard form.

3. Solve $x^2 - 2x - 15 = 0$

$$x = \dots$$
 or $x = \dots$

[1]

4. a)	Simplify fully						
	(i) $(p^3)^3$						
	(ii)	$\frac{3q^4 \times 2q^5}{q^3}$		[1]			
b)	Wr	ite down the integer values that satisfy the in $-6 \le 2x < 7$	nequality	[1]			
				[2]			
5.	A str	aight line has equation $2y + 3x = 5$ Write down the gradient of the line.					
	(b)	What is the equation of the line that goes the	hrough (1,3) and (3,6)	[1]			
				[2]			

	(c)	What is the equation of the line that is perpendicularly through the point $(0,-3)$	lar to the line $y = 4x - 9$, which passes	
				[2]
6.	Mak	e <i>m</i> the subject of the formula $2(2p + m) = 3 - 5m$		
			<i>m</i> =	[3]

7.

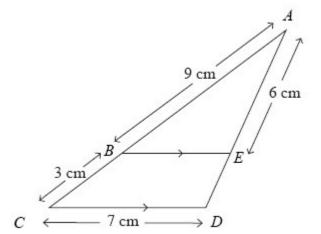


Diagram NOT accurately drawn

BE is parallel to CD.

AB = 9 cm, BC = 3 cm, CD = 7 cm, AE = 6 cm.

(a) Calculate the length of *ED*.

..... cm [2]

(b) Calculate the length of *BE*.

..... cm

[2]

8.

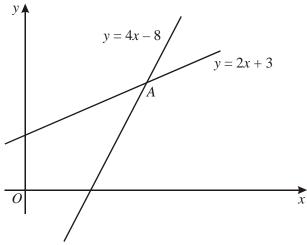
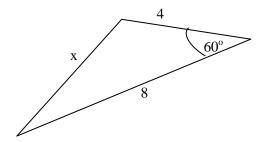


Diagram NOT accurately drawn

The diagram shows two straight lines intersecting at point A. The equations of the lines are


$$y = 4x - 8$$
$$y = 2x + 3$$

Work out the coordinates of A.

(`
()
(,	· · · · · · · · · · · · · · · · · · ·

[3]

9. Given that $\cos (60)$ is 0.5, calculate the length of the side marked x.

Give your answer in exact form.

[3]

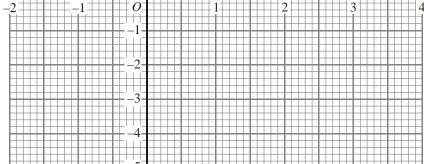
10.	There are	e nine girls and seven boys in a class. Two students are chosen without replacement.	
	a)	What is the probability that two girls are chosen?	
			2]
	b)	What is the probability that at least one girl is selected?	
			2]
		L'	<u></u>

11. (a) Complete the table of values for $y = x^2 - 3x - 1$.

х	-2	-1	0	1	2	3	4
У		3	-1	-3			3

[2]

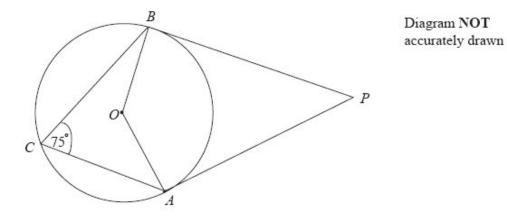
(b) On the grid below, draw the graph of $y = x^2 - 3x - 1$.


[2]

(c) Use your graph to find an estimate for the minimum value of y.

[1]

5-



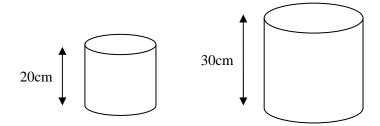
(d) By drawing a suitable line on your graph, estimate the solutions to the equation:

$$x^2 - 3x - 5 = 0.$$

.....

[2]

In the diagram, A, B and C are points on the circumference of a circle, centre O.


PA and	PB are tangents.	Angle A	$CB = 75^{\circ}$.	
a)	What is the size of an	gle AOB.	You must give a reason for your answer.	
			o	
			°	
Because	:			
]	[2]

Work out the size of angle *APB*. (b)

		0
• • • •	• • • • • •	

[3]

13. Two solid cylinders are mathematically similar.

a) The diameter of the larger cylinder is 18cm. What is the radius of the smaller cylinder?

[2]

b) The cylinders are both made of the same material. The small one weighs 160g. How much does the large one weigh?

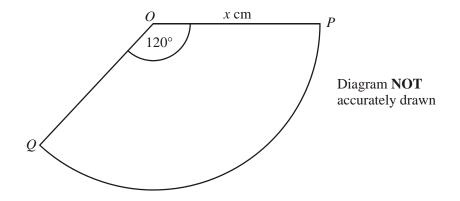
[2]

14.	Solve	the	simultaneous	equations
14.	SOLVE	uie	Simultaneous	equations

$$x^2 + y^2 = 29$$

$$y - x = 3$$

.....


[7]

15.	(a)	Evaluate		
		(i) 3^{-2}		
				[1]
		$2\pi^{\frac{2}{2}}$		[±]
		(ii) $27^{\frac{2}{3}}$		
				[1]
		$(iii) \left(\frac{16}{81}\right)^{-\frac{3}{4}}$		
				[2]
	(b)	Simplify:		
		(i) $3\sqrt{2} + 2\sqrt{8}$		
				[1]
		(ii) 21		
		(ii) $\frac{21}{\sqrt{7}}$		
				[2]
		(iii) $(\sqrt{5} + 2\sqrt{3})(\sqrt{5} - 2\sqrt{3})$		

[2]

16. The diagram shows a sector of a circle with a radius of x cm and centre O. PQ is an arc of the circle.

Angle $POQ = 120^{\circ}$.

- (a) Write down an expression in terms of π and x for
 - (i) the area of this sector,

.....

(ii) the perimeter of this sector.

.....

[3]

17. (a) Factorise $9x^2 - 6x + 1$

.....[2]

(b) Simplify $\frac{6x^2 + 7x - 3}{9x^2 - 6x + 1}$

.....

[3]

18. Show that
$$25 - \frac{(x-8)^2}{4} = \frac{(2+x)(18-x)}{4}$$

[3]

19. Prove algebraically that the sum of the squares of any two consecutive even integers is never a multiple of 8.

[4]